Near-Field Measurement System for the Upper Mid-Band

Ali Rasteh, Raghavendra Palayam Hari, Hao Guo, Marco Mezzavilla, Sundeep Rangan

NYU Wireless Center

Asilomar Conference on Signals, Systems, and Computers

30 October 2024

Collaborators

Raghavendra Palayam Hari Graduate Student @ NYU Wireless

Hao Guo Postdoc @ NYU Wireless and Chalmers Marco Mezzavilla Associate Professor @ Politecnico di Milano Co-Founder at Pi-Radio

Sundeep Rangan Professor @ NYU Wireless

Outline

- Near-field modeling
 - Experimental set-up
 - Preliminary results
 - **Future work**

Line-of-Sight (LOS) Multiple Input Multiple Output (MIMO)

4/31

Plane Wave Model: Single rank only

Channel is (roughly) high-rank when:

$$D \leq D_R = \frac{2d^2}{\lambda} =$$
Rayleigh Distance

d = Array aperture, D = Distance

Spherical Wave Model: High rank possible

Enables spatial multiplexing in LOS!

Lozano, "Harnessing the Radio Wavefront Curvature with Line-of-Sight MIMO", 2021

Ericsson LOS MIMO Demo

□Specifications:

- $^\circ$ 73 GHz carrier, 2.5 GHz bandwidth
- 8 streams (4 spatial x 2 polarization)
- At 5 bps/Hz: 2.5 x 8 x 5 = 100 Gbps!

Demonstrated at 1.5 km

NYU WIRELESS

Source: Yinggang Li et al, High-capacity mmW point-to-point radio links for 5G and beyond, 2019.

Traditional Spatial Cluster Model

Spatial cluster model

- Widely-used (e.g., 3GPP 38.901)
- Describes propagation by discrete paths

Each path cluster is described by:

- Angle of arrival (AoA)
- Angle of departure (AoD)
- Relative delay
- Path gain
- Enables prediction of arbitrary array response
- But assumes planar waves

MIMO Channel Response via PWA

MIMO response typically computed via a Plane Wave Approximation (PWA)

$$H_{mn}(f) = \sum_{\ell=1}^{L} g_{\ell} \exp\left(-\frac{j2\pi f}{c} d_{\ell}(\boldsymbol{x}_{m}^{r}, \boldsymbol{x}_{n}^{t})\right)$$

$$d_{\ell}$$
 = path distance function
Path distance typically computed by PWA

$$d_{\ell}(\boldsymbol{x}^{r}, \boldsymbol{x}^{t}) \approx \widehat{d}_{\ell}(\boldsymbol{x}^{r}, \boldsymbol{x}^{t})$$

= $c\tau_{\ell} + (\boldsymbol{u}_{\ell}^{r})^{\mathsf{T}}(\boldsymbol{x}_{0}^{r} - \boldsymbol{x}^{r}) + (\boldsymbol{u}_{\ell}^{t})^{\mathsf{T}}(\boldsymbol{x}_{0}^{t} - \boldsymbol{x}^{t})$

\square u_{ℓ}^{r} , u_{ℓ}^{t} : Directions of AoA and AoD, corresponding to receiver (RX) and transmitter (TX), respectively

7/31

Reflection Model for Near-Field

Reflection model

- Each path described by its image
- Path distance can be exactly computed
- Captures spherical propagation for near-field
- Improves the model accuracy in near-field

Hu, Y., Yin, M., Rangan, S., & Mezzavilla, M. (2023). Parametrization and Estimation of High-Rank Line-of-Sight MIMO Channels with Reflected Paths. IEEE Transactions on Wireless Communications.

Parameters in 2D

Plane wave model:

 $(g_\ell, \underbrace{\delta_\ell}, { heta_\ell^t}, { heta_\ell^r})$

Relative delay

Reflection model:

$$(g_{\ell}, \tau_{\ell}, \theta_{\ell}^t, \theta_{\ell}^r, s_{\ell})$$

Absolute delay Reflection

parameter

Parameters in 3D

Plane wave model:

Today's Problem

How do we measure the parameters for near-field

• Must handle multi-path

$$H_{mn}(f) = \sum_{\ell=1}^{L} g_{\ell} \exp\left(-\frac{j2\pi f}{c} d_{\ell}(\boldsymbol{x}_{m}^{r}, \boldsymbol{x}_{n}^{t})\right)$$

Contribution of today's talk:

- Near-field motivations and models
- A measurement procedure with (relatively) low-cost hardware

11/31

• Work is still in progress, initial results

Outline

- Near-field modeling
- Experimental set-up
 - Preliminary results
 - **Future work**

Frequency-range (FR)3 Transceiver (Pi-Radio)

Parameter	Value
Frequency of operation	6 to 22.6 GHz (goes up to 24 GHz with some trickery)
Architecture	2-channel MIMO. Simultaneous TX/RX
Tile-able?	Yes. Multiple units can be tiled phase-coherently
IF Frequency of operation	1 to 6 GHz center frequency
Instantaneous Bandwidth	1 GHz
TX max power per channel	17 dBm
RX Noise Figure	3 dB
Control	MicroZed (stand-alone / Ethernet), and direct GPIO
Antennas	Stock Vivaldi. Has RF + Control interfaces for new antennas
Programmable Gain (TX/RX)	53 dB of independently programmable gain, per channel
Onboard Clock Stability	0.5 parts per billion (ppb). Ultra-high stability
LO Phase Noise	-236 dBc/Hz FoM and -134 dBc/Hz normalized 1/f noise

NYU WIRELESS

MYU TANDON SCHOOL OF ENGINEERING

13/31

Challenges

- Challenge 1:
 - Current hardware is 2x2
 - Low spatial resolution

NYU WIRELESS

Challenge 2:

- Traditional channel sounding only gets AoA
- Need absolute distance for each image point

Key Idea: Synthetic Aperture

- Make multiple measurements
- Each measurement has only two RX antennas
- But, can vary:
 - Spacing between antennas
 - Centroid location of antennas
- Helps estimating the RM parameters

Hu, Y., Yin, M., Rangan, S., & Mezzavilla, M. (2023). Parametrization and Estimation of High-Rank Line-of-Sight MIMO Channels with Reflected Paths. IEEE Transactions on Wireless Communications.

Proposed Measurement Setup

- Digital MIMO baseband system using Xilinx RFSoC 4x2
- Pi-Radio MIMO FR3 Transceiver
- Wideband Vivaldi Antennas
- 2x1.5m Linear tracks for a synthetic wide aperture 1x2 antenna
- Host computer for baseband processing and Visualization

Digital Baseband System

- Xilinx RFSoC 4x2
- Zynq Ultrascale+ RFSoC XCZU48DR-2FFVG1517E
- Baseband processing using Python/Pynq
- 2 x 14-bit 9.85 GSPS RF-DACs
- 4 x 14-bit 5 GSPS RF-ADCs

Wideband Vivaldi Antenna (Pi-Radio)

Vivaldi End-Fire Antennas cover the whole range of 6-24 GHz

S Parameters (S11)

Farfield Radiation Pattern

Synthetic Wide Aperture Antennas

Using 2x 1.5m linear tracks with some control circuitry to tune antenna aperture

19/31

Synthetic Wide Aperture Antennas

Using 2 x 1.5m linear tracks and stepper motors with 0.1mm accuracy

Combining Multiple Spacings

- Solves challenge 1 (low spatial resolution)
- Trade-off between the resolution and ambiguity for different spacings
- Can combine both configs and improve the estimation

Algorithm of TX Distance Estimation

Algorithm 1 Multi-measurement Triangulation

Require: M measurements with different antenna spacings and locations

- 1: Perform standard sparse channel decomposition for each measurement
- 2: Extract paths and spatial signature for each path from the sparse channels
- 3: for each detected path do
- for each candidate location x do 4:
- 5: Calculate the expected phase rotation if TX is at x
- Compute the correlation of the expected phase rotation and the actual detected phase rotation 6: of the path for all measurements and RX antennas.
- end for 7:

Find the x location with maximum correlation {This is the TX location for that path} 8:

9: end for

$$\begin{split} \rho_i(x,y) &= \Sigma_m |\Sigma_r e^{-j\theta_{imr}} e^{j\bar{\theta}_{imrxy}}|^2 \\ (X,Y)_i &= argmax_{(x,y)} \ \rho_i(x,y) \end{split} \ \ \text{Measurement 'm', receiver} \\ \text{antenna 'r', and path 'i'} \end{split}$$

Outline

- Near field modeling
- Experimental set-up
- Preliminary results
 - **Future work**

Physical Measurement Setup

Measurements: 500 MHz Signal @ 10 GHz

Time domain channel response

Frequency domain received signal

Demo of Triangulation

Outline

- Near field modeling
- Experimental set-up
- Preliminary results

Future work

Ongoing Works and Plans

- Estimating the TX reflection images in the environment
- Estimating the reflection model parameters
- Using analog switches to estimate the parameters in a 3D environment
- Extending the system to more than 2x2

Summary

- Discussed LOS MIMO models
- Reviewed PWA model vs Reflection Model (RM)
- Proposed a new measurement system for RM parameter estimation
- Demonstrated preliminary results from the proposed system

References

- Hu, Y., Yin, M., Rangan, S., & Mezzavilla, M. (2023). Parametrization and Estimation of High-Rank Line-of-Sight MIMO Channels with Reflected Paths. IEEE Transactions on Wireless Communications.
- □ 3GPP Technical Report 38.901, "Study on channel model for frequencies from 0.5 to 100 GHz (Release 16)," Dec. 2019.
- Efficient ray-tracing simulation for near-field spatial non-stationary mmWave massive MIMO channel and its experimental validation

"AMD RFSoC 4x2,"

https://www.amd.com/en/corporate/university-program/aup-boards/rfsoc4x2.html

Thank You! Happy to discuss further!

Ali Rasteh

TANDON SCHOOL OF ENGINEERING

31/31

Accuracy of PWA Model

$$\begin{aligned} d_{\ell}(\boldsymbol{x}^{r}, \boldsymbol{x}^{t}) &\approx \widehat{d}_{\ell}(\boldsymbol{x}^{r}, \boldsymbol{x}^{t}) \\ &= c\tau_{\ell} + (\boldsymbol{u}_{\ell}^{r})^{\mathsf{T}}(\boldsymbol{x}_{0}^{r} - \boldsymbol{x}^{r}) + (\boldsymbol{u}_{\ell}^{t})^{\mathsf{T}}(\boldsymbol{x}_{0}^{t} - \boldsymbol{x}^{t}) \\ (\boldsymbol{u}^{r})^{\mathsf{T}} &= -\frac{\partial d_{\ell}(\boldsymbol{x}_{0}^{r}, \boldsymbol{x}_{0}^{t})}{\partial \boldsymbol{x}^{r}}, \quad (\boldsymbol{u}^{t})^{\mathsf{T}} &= -\frac{\partial d_{\ell}(\boldsymbol{x}_{0}^{r}, \boldsymbol{x}_{0}^{t})}{\partial \boldsymbol{x}^{t}} \\ \boldsymbol{u}_{\ell}^{r} &= (\cos(\phi_{\ell}^{r})\cos(\theta_{\ell}^{r}), \sin(\phi_{\ell}^{r})\cos(\theta_{\ell}^{r}), \sin(\theta_{\ell}^{r})) \\ \boldsymbol{u}_{\ell}^{t} &= (\cos(\phi_{\ell}^{t})\cos(\theta_{\ell}^{t}), \sin(\phi_{\ell}^{t})\cos(\theta_{\ell}^{t}), \sin(\theta_{\ell}^{t})), \\ d_{\ell}(\boldsymbol{x}^{r}, \boldsymbol{x}^{t}) - \widehat{d}_{\ell}(\boldsymbol{x}^{r}, \boldsymbol{x}^{t}) \\ &= O(||\boldsymbol{x}_{0}^{r} - \boldsymbol{x}^{r}||^{2}) + O(||\boldsymbol{x}_{0}^{t} - \boldsymbol{x}^{t}||^{2}) \end{aligned}$$

Parameters of PWA Model

Parameters we need to estimate for the PWA model:

$$(g_{\ell}, \tau_{\ell}, \phi_{\ell}^r, \theta_{\ell}^r, \phi_{\ell}^t, \theta_{\ell}^t), \quad \ell = 1, \dots, L$$

 $\begin{array}{c|c} & g_{\ell} & : \text{Complex path gain} \\ \hline & \mathcal{T}_{\ell} & : \text{Path delay} \\ \hline & \phi_{\ell}^{r}, \theta_{\ell}^{r} & : \text{Angle of Arrival of the path at the receiver} \\ \hline & \phi_{\ell}^{t}, \theta_{\ell}^{t} & : \text{Angle of Departure of the path at the transmitter} \end{array}$

Path Distance Function for RM-NLoS

The Reflection Model for Non-Line of Sight is suggested as follows:

$$d_{\ell}(\boldsymbol{x}_{m}^{r}, \boldsymbol{x}_{n}^{t}) = \left\| \boldsymbol{x}_{m}^{r} - \boldsymbol{U}_{\ell} \boldsymbol{x}_{n}^{t} - \boldsymbol{g}_{\ell} \right\|$$

 $oldsymbol{U}_\ell$: Orthogonal Rotation Matrix
 $oldsymbol{g}_\ell$: Translation Vector

Path Distance Function for RM-NLoS

$$\begin{aligned} \boldsymbol{R}_{z}(\phi) &:= \begin{bmatrix} \cos(\phi) & -\sin(\phi) & 0\\ \sin(\phi) & \cos(\phi) & 0\\ 0 & 0 & 1 \end{bmatrix} \\ \boldsymbol{R}_{y}(\theta) &:= \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta)\\ 0 & 1 & 0\\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \\ \boldsymbol{R}_{x}(\gamma) &:= \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\gamma) & -\sin(\gamma)\\ 0 & \sin(\gamma) & \cos(\gamma) \end{bmatrix} \end{aligned} \qquad \boldsymbol{Q}_{z}(s) := \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & s \end{bmatrix} \end{aligned}$$

$$d(\boldsymbol{x}^{r}, \boldsymbol{x}^{t}) = \left\| c\tau \boldsymbol{e}_{x} + \boldsymbol{R}_{y}(\theta^{r})\boldsymbol{R}_{z}(-\phi^{r})(\boldsymbol{x}_{0}^{r} - \boldsymbol{x}^{r}) + \boldsymbol{Q}_{z}(s)\boldsymbol{R}_{x}(\gamma^{t})\boldsymbol{R}_{y}(\theta^{t})\boldsymbol{R}_{z}(-\phi^{t})(\boldsymbol{x}_{0}^{t} - \boldsymbol{x}^{t}) \right\|$$

Parameters of Reflection Model

Parameters we need to estimate for the reflection model:

$$(g_{\ell}, \tau_{\ell}, \phi_{\ell}^r, \theta_{\ell}^r, \phi_{\ell}^t, \theta_{\ell}^t, \gamma_{\ell}^t, s_{\ell}), \quad \ell = 1, \dots, L$$

36/31

Measurement Methodology

Calibration

Tools and softwares

FR3 Transceiver (Pi-Radio)

- 2-channel MIMO Transceiver
- G-24 GHz RF
- 📮 1-6 GHz IF

