
Robot Localization and Navigation Project 3

Ali Rasteh

April 25, 2024

Problem Definition
In this project, we are going to combine measurements from both a vision sensor on the drone in form of pose
and velocity estimations along with IMU velocity measurements. Just similar to Project 1, the chosen orientation
representation for this project is ZYX Euler parameterization, and the experiments are done in two parts. In the
first part, the position and orientation from the onboard Apriltag tracker are used as measurements for an Unscented
Kalman Filter fed with IMU measurements as input to a motion kinematic model. In the second part of the project,
the measurement is just the velocity of the drone computed from the onboard vision sensor.

Problem Formulation

Process Model
The following state vector is used as the state in system dynamics for the purpose of this project.

x =


x1

x2

x3

x4

x5

 =


p
q
ṗ
bg

ba

 =


position

orientation
linear velocity
gyroscope bias

accelerometer bias

 ∈ R15 (1)

As mentioned in the course slides, the following formulation is used as the system dynamics equations for both part
1 and part 2 in this project.

ẋ =


x3

G (x2)
−1

(ωm − x4 − ng)
g +R (x2) (am − x5 − na)

nbg

nba

 = f(x, u, n) (2)

where, na and ng represent the accelerometer and gyroscope noise terms and nba and nbg represent the dynamics of
the accelerometer and gyroscope biases. As mentioned in the project the noise covariance matrix or noise standard
deviation values should be tuned in a way that the estimation works well with all 3 datasets. However, in the real-
world scenario, these Gaussian noise variances should be provided by the manufacturer of the sensors and used in the
dynamics. However, in this project, we did according to the requirements and tuned the covariance matrix and our
defined values could be observed in "pred_step.m". Furthermore, the accelerometer and gyroscope measurements
are considered as the inputs to the process model and are indicated by ωm and am in Eq.2. Still G (x2) and R (x2)
should be defined in the process equations. The R (x2) is the rotation matrix corresponding to x2 or the orientation
of the system which are the Euler angles along Z, Y, and X axis. The R matrix for the ZYX rotation could be
derived by multiplying the basic rotation matrices along each of the axes as follows.

WRB(ψ, θ, ϕ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

×

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

×

1 0 0
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ) cos(ϕ)

 (3)

where W represents the world inertial frame and B is the body frame fixed to the IMU. In this project, the IMU
frame coincides with the robot body frame, and no more rotation is needed. A rotation matrix ARB rotates the
frame A to align with frame B. So in Eq. 3 we first rotate the inertial frame around its z-axis for ψ radians and

1



Measurement Model for Part1 PROBLEM FORMULATION

then around the y-axis of the resulting frame for θ radian and finally around the x-axis of the result for ϕ radians.
In our codes, we use the "eul2rotm_zyx and" MATLAB builtin "eul2rotm" functions to do rotations.
The G(ψ, θ, ϕ) matrix maps the rate of the Euler parameters ψ̇, θ̇, ϕ̇ to the body angular velocity of frame B with
respect to frame W and expressed in frame W, WωW

B .

WωW
B =

ωx

ωy

ωz

 = G(ψ, θ, ϕ)

ϕ̇θ̇
ψ̇

 (4)

The expression for this mapping is derived based on the law of adding angular velocities. For the ZYX convention
in this project, it can be derived as follows:

G(ψ, θ, ϕ) =

00
1

 ψ̇
+

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

01
0

 θ̇
+

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

10
0

 ϕ̇
(5)

The Eq. 5 we first express the rotation rate around the z-axis, ψ̇ in the world frame, then we express the rotation
rate around the y-axis, θ̇ in the world frame, and finally we express the rotation rate around the x-axis, ϕ̇ in the
world frame. We sum all of these rotation rates expressed in the world frame to find the complete transformation
matrix. The resulting expression is then computed as follows:

G(ψ, θ, ϕ) =

cos(θ)cos(ψ) −sin(ψ) 0
cos(θ)sin(ψ) cos(ψ) 0

−sin(θ) 0 1

 (6)

It’s very important to note that the gyroscope, measures the body angular velocity as expressed in the body frame,
BωW

B , while Eq.4 expresses the Euler parameter rates to the body angular rate expressed in the world frame. So we
should pre-multiply G(ψ, θ, ϕ) by the inverse of R shown in Eq. 3 to find the right and final transformation matrix.
So the final G matrix is as follows and appears the same in our codes.

G(ψ, θ, ϕ) =

1 0 −sin(θ)
0 cos(ϕ) sin(ϕ)cos(θ)
0 −sin(ϕ) cos(ϕ)cos(θ)

 (7)

Measurement Model for Part1
In the first part of this project, the measurements are assumed to be the position and orientation of the robot reported
by the Vicon system. These measurements are directly accessible in the states, so the measurement model is simply
as follows. It simply extracts the first 6 items in systems states which correspond to the position and orientation of
the drone.

C =
[
I6×6 06×9

]
,

y = Cx+ v
(8)

Measurement Model for Part2
In the second part of the project, the measurement is just the velocity of the drone computed from the onboard
vision sensor. The difficulty in this section is that the provided velocities by the camera are in its local coordinate
frame and must be mapped to the IMU body frame before fusion. We achieve this through the adjoint transform.

2



Filter Equations PROBLEM FORMULATION

Computing the Adjoint Using Camera measurements

In mapping the body-frame camera linear velocity to the IMU frame, the angular velocity of the platform needs to
be taken into account. In this section, I use the angular velocity from the optical flow to formulate the mapping:

cvw
c = Rc

bR
w
b (x2)

⊤
x3 −Rc

bS
(
rbbc

)
Rb

c(
cωw

c +wω) +wv (9)

Where Rc
b and rcb are the extrinsic transformation between the camera and the IMU, S(.) is the skew-symmetric

matrix representation of the cross product and wv,wω are linear and angular velocity noise terms. Furthermore,
Rw

b (x2) is the rotation matrix parameterized by the rotation part of the state (x2).

Computing the Adjoint Using Gyroscope measurements

We can modify the measurement model as follows to use the more robust angular velocity sensor which is the
gyroscope. We should also consider the bias drift of the gyroscope.

cvw
c = Rc

bR
w
b (x2)

⊤
x3 −Rc

bS
(
rbbc

)
(bωw

b +wgyro − x4) +wv (10)

Note that the gyroscope bias is removed through its estimated value in the state (x4).

Filter Equations
To deal with the nonlinearities, in this project we resort to the UKF way of propagating uncertainties. As described
in the course slides, the filter operates in two steps:

UKF Transform

The goal of the transform is to propagate a random variable through a nonlinear mapping and determine the
distribution of the output variable. For a nonlinear system with non-additive noise terms, we should augment the
state as xaug = [x⊤,n⊤]⊤:

X ∼ N (µ,Σaug) µ =

[
µx

0

]
, Σaug =

[
Σ 0
0 Q

]
(11)

Denoting n, nq as the dimensionality of state and noise, the augmented state has a dimension equal to the sum of
the two and is defined as n′ = n+nq. For the augmented states defined above we then generate 2n′+1 sigma points
as follows:

X (0)
aug = µaug, X (i)

aug = µaug ±
√
n′ + λ′

[√
Σaug

]
i

(12)

where λ = α2(n′ + k) − n′ determines the spread of the sigma points through α, k. As stated in the course slides,
typical values for these parameters for the case of a Gaussian distributed random variable are α = 0.001, k = 1.
Then, we feed these sigma points through the nonlinearity as follows:

Y(i) = h
(
X (i),x

aug ,X (i),q
aug

)
i = 0, . . . 2n′ (13)

where X (i),x
aug denotes the state section of the the sigma point X (i) while X (i),q

aug represents the noise section.

Finally, we use the mapped sigma points †(i) to compute the corresponding mean and covariance as follows:

mY =

2n′∑
i=0

W
(m)′

i y(i) W
(m)′
0 =

λ′

n′ + λ′
W

(m)′

i =
1

2 (n′ + λ′)
i = 1, . . . 2n′ (14)

SY =

2n′∑
i=0

W
(c)′
i

(
Y(i) −mY

)(
Y(i) −mY

)T

W
(c)′
0 =

λ′

n′ + λ′
+
(
1− α2 + β

)
W

(c)′
i =

1

2 (n′ + λ′)
(15)

3



Part1 PROJECT RESULTS

Furthermore, the cross-covariance of X and Y may be computed as follows:

CU =

2n′∑
i=0

W
(c)′
i

(
X (i),x −mX

)(
Y(i) −mY

)T

(16)

Prediction

In the prediction step, the latest posterior is propagated in time through the measurements from our introspective
modality. In contrast to the EKF that uses the Jacobian of the motion and measurement model to propagate
uncertainties, here we employ the unscented transform to achieve this goal. As described in the previous section,
first we generate the augmented sigma points and propagate them through the system motion model:

χ
(i)
t = f

(
χ
(i),x
aug ,t−1, ut, χ

(i),q
aug,t−1

)
i = 0, . . . 2n′ (17)

Here ut encodes the IMU measurements into a single vector. Then, we compute the prediction mean and covariance
using Eq.14, Eq.15 to get Σ̄ µ̄. The bar on the state mean and covariance indicate that they are predicted values
from interoceptive measurements up to the current moment and the exteroceptive measurements up to the previous
timestep. Note that in discretizing the dynamics, we multiply the noise covariance values by the sampling time ∆t,
and the bias dynamics are propagated as xbias,t = xbias,t−1 + nbias,d where nbias,d ∼ N (0,∆tnb).

Update

Part1

The next step in the Kalman filter is to update our prediction based on the observations received from our measure-
ments. By doing the update step, our sense of the system states statistically approaches the actual values. For the
first part of the project, the measurement model is linear and the update procedure is the same as the case for the
EKF:

µt = µ̄t +Kt (zt − g (µ̄t, 0))

Σt = Σ̄t −KtCΣ̄t

Kt = Σ̄tC
T
(
CΣ̄tC

T +R
)−1

(18)

where zt and R are the measurement value and corresponding noise estimates. Intuitively, the Kalman gain Kt

at each step is determined by how uncertain the filter is about the measurement (R) and the prediction from the
previous step (Σ̄t).

Part2

The measurement model for the second part is no longer linear (Eq.9 and Eq.10) and we should again use the
unconnected transformation in order to manipulate the uncertainties. Specifically, similar to the procedure we took
for the prediction step, for either measurement model we create an augmented state defined as the stack of the state
and noise variables and propagate it through the nonlinear measurements model as follows:

Z(i)
t = g

(
χ
(i),x
aug,t, χ

(i),v
aug,t

)
i = 0, . . . 2n′′ (19)

Using these sigma points, we then compute the measurement mean mZ , covariance S, and cross-covariance C using
equations Eq.14,15, and 16. Finally, the updated equations are formulated as follows:

µt = µt +Kt (zt −mZ)

Σt = Σt −KtStKt
T

Kt = CtS
−1
t

(20)

4



PROJECT RESULTS

Figure 1: Results of part 1 for dataset 1 where the UKF is updated by the pose and position measurements from the
aprigTag tracker. The blue curves show the actual values of states while the red curves show the predicted values.
The UKF estimator is clearly converging to the actual values using measurements.

Figure 2: Results of part 1 for dataset 4 where the UKF is updated by the pose and position measurements from the
aprigTag tracker. The blue curves show the actual values of states while the red curves show the predicted values.
The UKF estimator is clearly converging to the actual values using measurements.

Project Results

Part1
The results of the first part of the project are shown in Fig.1 to 2. As shown in the figures the actual and predicted
values of the system states are close to each other which shows the system is observable. It was predictable as in this5



Part2 PROJECT RESULTS

Figure 3: Results of part 2 for dataset 1 where the UKF is updated by velocity measurements obtained from the
optical flow. The blue curves show the actual values of states while the red curves show the predicted values. The
UKF estimator is clearly converging to the actual values using measurements.

part we have measurements from both the translation and orientation of the drone. Also, it can be inferred that the
fluctuation in IMU sensor biases is small and not sharp in time which makes it possible for the filter to use the IMU
measurements effectively.

Part2
In the second part of the project, the filter is updated only using the measured velocity by the optical flow and
mapped to the world-frame velocity through measurement models Eq.9, 10. This scenario is more challenging to
handle as the inference of the full pose through linear velocity requires the trajectory to be suitably excited.

Computing the Adjoint Using Camera

Fig.3 to 4 shows the result of fusing the IMU data with linear velocity obtained from the optical flow system (Eq.10).
In this section, the body angular rate for computing the adjoint map is also taken from the optical flow sensor. As
it can be seen, as opposed to the previous part, the estimation accuracy is not as high because the fusion of the
onboard sensor is carried out in the world frame while both sensors measure their quantities in the local-body frame
and do so only through the linear velocity as the measurement. It seems that this system has observability issues
and yaw drift which is clear from the plots.

Computing the Adjoint Using Gyroscope

Fig.5 to 6 shows the result of fusing the IMU data with linear velocity obtained from the optical flow system and
mapped to the body frame through the angular velocity measured by the gyroscope (Eq.9). As can be seen, since the
gyroscope provides a more accurate and less noisy estimate of the angular velocity, the drift is not as bad as in the
previous section. However, the latent root of it is still in place and we observe slight drifts throughout time. Finally,
similar to the previous part, the bias terms are mostly stable for both measurement models. The fluctuations at
some points are mandatory for finding the right orientation states as they are the only degrees of freedom in the
filter that can modify the output of the IMU to match the observations.

6



Part2 PROJECT RESULTS

Figure 4: Results of part 2 for dataset 4 where the UKF is updated by velocity measurements obtained from the
optical flow. The blue curves show the actual values of states while the red curves show the predicted values. The
UKF estimator is clearly converging to the actual values using measurements.

Figure 5: Results of part 2 for dataset 1 where the UKF is updated by velocity measurements obtained from the
optical flow and mapped to the body frame through the gyroscope measurements. The blue curves show the actual
values of states while the red curves show the predicted values. The UKF estimator is clearly converging to the
actual values using measurements.

7



Part2 PROJECT RESULTS

Figure 6: Results of part 2 for dataset 4 where the UKF is updated by velocity measurements obtained from the
optical flow and mapped to the body frame through the gyroscope measurements. The blue curves show the actual
values of states while the red curves show the predicted values. The UKF estimator is clearly converging to the
actual values using measurements.

8


	Problem Definition
	Problem Formulation
	Process Model
	Measurement Model for Part1
	Measurement Model for Part2
	Computing the Adjoint Using Camera measurements
	Computing the Adjoint Using Gyroscope measurements

	Filter Equations
	UKF Transform
	Prediction
	Update
	Part1
	Part2


	Project Results
	Part1
	Part2
	Computing the Adjoint Using Camera
	Computing the Adjoint Using Gyroscope



