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Line-of-Sight (LOS) Multiple Input Multiple Output (MIMO)

Plane Wave Model: Single rank only Channel is (roughly) high-rank when:
D > Dg ({: _D_DH(, D < Dp = 2 — Rayleigh Distance

d = Array aperture, D = Distance

Spherical Wave Model: High rank possible . ) .
& g Enables spatial multiplexing in LOS!

® i D \ \
D < Dp ({ 27 ) I d
@ - ;
W ///7
Lozano, “Harnessing the Radio Wavefront Curvature with Line-of-Sight MIMO”,

2021
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Ericsson LOS MIMO Demo

Specifications:
o 73 GHz carrier, 2.5 GHz bandwidth
o 8 streams (4 spatial x 2 polarization)
o At 5 bps/Hz: 2.5 x 8 x5 =100 Gbps!

(Demonstrated at 1.5 km

=,

Source: Yinggang Li et al, High-capacity mmW point-to-point radio links for 5G
and beyond, 2019.
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Traditional Spatial Cluster Model

O Spatial cluster model
o Widely-used (e.g., 3GPP 38.901)
o Describes propagation by discrete paths

(d Each path cluster is described by:
o Angle of arrival (AoA)
o Angle of departure (AoD)
o Relative delay
o Path gain - Anim o

Subpath m

MS directior
of travel

1  Enables prediction of arbitrary array response :
BS array

But assumes planar waves T s e
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MIMO Channel Response via PWA

O  MIMO response typically computed via a Plane Wave Approximation (PWA)

L .
2T
1) = Y geesp (-2 du(ar, ) )
—1 ¢ RX Array
. . O
QA dy = path distance function ¢

Path dist typicall ted by PWA
O Path distance typically computed by N, receivers 0

O

o O

TX Array
NT transmitters

de(z", ") ~ Jg(wr,wt)

= c7y + (ug)T(xg — ") + (ug)T (x5 — ')

4 uz ,uz : Directions of AoA and AoD, corresponding to receiver (RX) and
transmitter (TX), respectively
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Reflection Model for Near-Field

J Reflection model

TX Image

o Each path described by its image ,
] OO@

o Path distance can be exactly computed ©

o Captures spherical propagation for near-field

d Improves the model accuracy in near-field

RX Array \

O
O
. . . O
Hu, Y, Yin, M., Rangan, S., & Mezzavilla, M. (2023). Parametrization ) P &
and Estimation of High-Rank Line-of-Sight MIMO Channels with
Reflected Paths. IEEE Transactions on Wireless Communications. TX Array
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Parameters in 2D

O Plane wave model:

TX Image

(9¢, 00,0, 60;)
e

Relative delay

<
t Q rra
0005
/

Absolute delay O
Reflection O

parameter

A YN

O Reflection model:

ye ad

TX Array
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Parameters in 3D

O Plane wave model:

TX Image
L t 7 g
(gﬁ 9 5Q 6@7 ¢£ ) 92 ) ¢€) . QS@
Relative delay

O Reflection model:

¢ t r r o RX Array \
(gﬁanaeléagb[Eaeéagbﬁa'5/3’775) o /
/ /o :
Absolute delay Reflection  TX rotation O
parameter around LOS axis ®

ye ad

TX Array
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Today’s Problem

1 How do we measure the parameters for near-field

o Must handle multi-path

d  Contribution of today’s talk:

o Near-field motivations and models

o A measurement procedure with (relatively) low-cost hardware

o Work is still in progress, initial results
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Frequency-range (FR)3 Transceiver (Pi-Radio)

Frequency of operation 6 to 22.6 GHz (goes up to 24 GHz with some trickery)
Architecture 2-channel MIMO. Simultaneous TX/RX

Tile-able? Yes. Multiple units can be tiled phase-coherently

IF Frequency of operation 1 to 6 GHz center frequency

Instantaneous Bandwidth 1 GHz

TX max power per channel 17 dBm

RX Noise Figure 3dB

Control MicroZed (stand-alone / Ethernet), and direct GPIO
Antennas Stock Vivaldi. Has RF + Control interfaces for new antennas
Programmable Gain (TX/RX) 53 dB of independently programmable gain, per channel
Onboard Clock Stability 0.5 parts per billion (ppb). Ultra-high stability

LO Phase Noise -236 dBc/Hz FoM and -134 dBc/Hz normalized 1/f noise
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Challenges

d Challenge 1:
o Current hardware is 2x2

TX Image

o Low spatial resolution :}/,/@”’6

RX Array \

o %
d Challenge 2: 5] "
o Traditional channel sounding only gets AoA ® pare e
o Need absolute distance for each image point
TX Array
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Key Idea: Synthetic Aperture

d  Make multiple measurements

d Each measurement has only two RX antennas

Receive
' Antennas
“

[ But, canvary:
o Spacing between antennas

Transmit
Antenna

o Centroid location of antennas

d  Helps estimating the RM parameters

Hu, Y, Yin, M., Rangan, S., & Mezzavilla, M. (2023). Parametrization
and Estimation of High-Rank Line-of-Sight MIMO Channels with
Reflected Paths. IEEE Transactions on Wireless Communications.
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Proposed Measurement Setup

Stepper Hat > ¥
< Power to Stepper

Linear |

3 Pi-Radio MIMO FR3 Transceiver e Tracks

Raspberry Pi

(J Digital MIMO baseband system using -
Xilinx RFSoC 4x2 i

Receive
. Antennas

J Wideband Vivaldi Antennas

Transmit

Antenna
[ 2x1.5m Linear tracks for a synthetic

wide aperture 1x2 antenna 5 _ A Rx1(FR3 T —= |

% ; TX(FR3)
[ Host computer for baseband EI RFSOC4X2 oy Lo b i FRS
processing and Visualization % FRT  converter |
’)

Host PC

Data Link
Control Link
Power Link
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Digital Baseband System

Xilinx RFSoC 4x2

Zyng Ultrascale+ RFSoC XCZU48DR-2FFVG1517E
Baseband processing using Python/Pynq
2 x 14-bit 9.85 GSPS RF-DACs

U 0O 0 00

4 x 14-bit 5 GSPS RF-ADCs = ‘BRI
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Wideband Vivaldi Antenna (Pi-Radio)

O Vivaldi End-Fire Antennas cover the whole range of 6-24 GHz

Model Farfield Radiation Pattern

S Parameters (511)

7
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Synthetic Wide Aperture Antennas

d  Using 2x 1.5m linear tracks with some control circuitry to tune antenna aperture

Ty
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Synthetic Wide Aperture Antennas

(d  Using 2 x 1.5m linear tracks and stepper motors with 0.1mm accuracy
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Combining Multiple Spacings

. . spacin
@ Solves challenge 1 (low spatial /2 spacing Af: ulagr
i Poor resolution g . Combined
resolution) ambiguity

 Trade-off between the resolution and
ambiguity for different spacings

1  Can combine both configs and improve
the estimation

NYU | Zreenssise: WP NYUWIRELESS



Algorithm of TX Distance Estimation

.Algorithm 1 Multi-measurement Triangulation

Require: M measurements with different antenna spacings and locations
1: Perform standard sparse channel decomposition for each measurement
2: Extract paths and spatial signature for each path from the sparse channels
3: for each detected path do
4:  for each candidate location x do
5 Calculate the expected phase rotation if TX is at x
6: Compute the correlation of the expected phase rotation and the actual detected phase rotation
of the path for all measurements and RX antennas.
7. end for
8:  Find the x location with maximum correlation {This is the TX location for that path}
9: end for

p — _]ezmr jeimrwy 2
Pi (337 y) — Zm|27°€ € | Measurement ‘m’, receiver

antenna ‘r’, and path ‘i’

(X7 Y)z = Argmad (g ) pi(xv y)
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Physical Measurement Setup
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Measurements: 500 MHz Sighal @ 10 GHz

Channel-Mag-TD, Freq 10.0, RX ant 0/1 RX-FD, Freq 10.0GHz, RX ant 0
E_ l‘ “'!l ” 3
zo | ! i I\‘ L T g N l\ M: N (LA
TN IMM L L . 1o

5 ‘
Time (ns) Freq (MHz)

Time domain channel response Frequency domain received signal
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Demo of Triangulation

Multipath Channel PDP, Freq 10.0GHz

SNR (dB)

50
Time (ns)
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https://docs.google.com/file/d/1-mq_Qausq5FEu4YwcNgnNkAlcOHQ-DQM/preview
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Ongoing Works and Plans

d Estimating the TX reflection images in the environment

Estimating the reflection model parameters

H
d Using analog switches to estimate the parameters in a 3D environment
H

Extending the system to more than 2x2
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Summary

d Discussed LOS MIMO models

d Reviewed PWA model vs Reflection Model (RM)
(d  Proposed a new measurement system for RM parameter estimation
H

Demonstrated preliminary results from the proposed system
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Thank You!
Happy to discuss further!

=i A/ W L]
& 5 . -
pi-radio
o
et o] e

assesbied in the USA

Ali Rasteh 8ar7655@nyu.edu
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Accuracy of PWA Model

do(x", xt) = do(x”, z?)
= e + (up)T(zg — ") + (up)T(zg — =)
~ Ody(zg, zp) ~ 0dy(zg, zp)
oxr ' Ox?
uy = (cos(¢y) cos(6y), sin(¢y) cos(by ), sin(6y))
ug = (cos(¢y) cos(6y), sin(¢y) cos(0y), sin(6y)),
de(x", ) — do(z", )

= O([l=t — ="||*) + O([|=g — =*[|)

(u")T = (u')T =
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Parameters of PWA Model

JParameters we need to estimate for the PWA model:

(g£77€7¢z79£7¢z765)7 ZZ]‘?"'?L

Q gﬁ : Complex path gain
Q TE : Path delay
T 97’
| ¢£ s V¢ : Angle of Arrival of the path at the receiver
t (9t
| ¢g, ¢ : Angle of Departure of the path at the transmitter
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Path Distance Function for RM-NLoS

The Reflection Model for Non-Line of Sight is suggested as follows:

de(x],, x}) = ||z], — Uzt — g,

QO Uy : orthogonal Rotation Matrix
Q ge : Translation Vector
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Path Distance Function for RM-NLoS

|0 0

[ cos(f) 0 sin(@)] 1 0 O
Ry(0):=| 0 10 (s):=10 1 0

- sin(fd) 0 cos() Q(s) 0 0 s

1 0 0
R.(y) = |0 cos(y) - Sin(v)}
|0 sin(y)  cos(v)

d(z", x") = HCTGx + R,(0")R(—¢")(x[; — ")

+Q.(s)Ra (Y ) Ry (0" R:(—¢") (m; — )
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Parameters of Reflection Model

Parameters we need to estimate for the reflection model:

(9677-67¢z76£7¢270277578£)7 gz]‘?"'7L

Q gﬁ : Complex path gain
a Te : Path delay

ng 97“
A ¥l YL Angle of Arrival of the path at the receiver

t nt

| ¢£7 eg: Angle of Departure of the path at the transmitter
a Yy : Rotation Angle of the reflection around X axis
Q Se : Parity of number of reflections along the path
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Measurement Methodology

Calibration

Tools and softwares
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FR3 Transceiver (Pi-Radio)

[ 2-channel MIMO Transceiver

(d 6-24 GHz RF
d 1-6GHzIF

o e
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